-2x^2+160=40x

Simple and best practice solution for -2x^2+160=40x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2x^2+160=40x equation:



-2x^2+160=40x
We move all terms to the left:
-2x^2+160-(40x)=0
a = -2; b = -40; c = +160;
Δ = b2-4ac
Δ = -402-4·(-2)·160
Δ = 2880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2880}=\sqrt{576*5}=\sqrt{576}*\sqrt{5}=24\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-24\sqrt{5}}{2*-2}=\frac{40-24\sqrt{5}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+24\sqrt{5}}{2*-2}=\frac{40+24\sqrt{5}}{-4} $

See similar equations:

| 3x(2x-15)=03x=0 | | −1=−3(3r−8)−7 | | 3x18.50+2x=104.50 | | Y=10x+(-50) | | 2(-x+7)-2x=6 | | 5(8-1y)2y=-2 | | 3x(2x-15)=0 | | 1/5=4/x | | -(3x-12)=30 | | −8.5x+0.31=−6.49 | | -5(2x-4=2(10-5x) | | 4+x=4x-11 | | -2x(x-3)=30 | | 0=-16x^2+187x+93 | | 3(x-7)+6x=6 | | 4a-2=70+7a | | 3|2x-5|-7=-4 | | 4x+10–2x=26 | | 5+1p=8+0.75p | | 2x(3+2)=-8 | | 6x-18=4(2x-3)-2x+6) | | f(×)=20×+8 | | -7-24x=3 | | 5x+7+20=5x+7+20 | | -2(1-7x)+2(1-4x)=-5x+5 | | -6+(x+4)^2=0√ | | -22=39x | | -4(2-x)-3x=11 | | 3p/8+7p/16=1/4+p/16+1/2 | | 12=x(5-3)^2-4 | | x-8/3=3x-24/9 | | 8x^2+2x-23=-2 |

Equations solver categories